

Radio-Tech VHF Transmitter Messages

Version A

Warning: This manual contains important safety and operating information. Please read, understand and follow the instructions in the manual.

TABLE OF CONTENTS

1		2
2	TRANSMITTER TYPES	2
2.1	Type 81 _h – Pulse Transmitter (Single and Dual)	2
	Type 82 h – Temperature Transmitter2.1Standard Resolution (0.5 °C) Temperature Transmitter2.2High Resolution (0.1 °C) Temperature Transmitter	3
2.3	Type 88 _h – Alarm/Status Transmitter	5
2.	Type F1 h – Various Transmitters4.1Analogue Voltage (0 – 10V) Transmitter4.2High Resolution Temperature (PT100) Transmitter4.3Sensus Transmitter	5 6
2.5	Type F2 h – Pressure/Flow Transmitter	8

1 Introduction

The Radio-Tech transmitter messages are of a fixed length of 11 bytes, and have the following common format.

Byte 0: Type code (usually quoted in hexadecimal).

- Byte 1: Serial number high byte.
- Byte 2: Serial number mid byte.

Byte 3: Serial number low byte.

Byte 4: Status: Bit 7: Set (1) for low battery. Bit 4 - 6: Depends on transmitter type. Bit 0 - 3: Firmware version.

Byte 5:Data 1.Byte 6:Data 2.Byte 7:Data 3.Byte 8:Data 4.

Byte 9: CRC low byte. The CRC does not include the type code. Byte 10: CRC high byte.

2 Transmitter Types

2.1 Type 81_h – Pulse Transmitter (Single and Dual)

Status:	Bit 7:	Set (1) for low battery.
	Bit 6:	Not used.
	Bit 5:	Not used.
	Bit 4:	Tamper (if available).
	Bit 0 – 3:	Firmware version.

Data 1 – 3: 24-bit pulse count value (most significant byte first). E.g. Value $234455_h = 2311253$

Data 4: High nibble: Signal strength (between 0-10). Low nibble: Cumulative counter that increments for each transmission (between 0-15).

The dual pulse transmitter has two consecutive serial numbers, one for each pulse channel. It transmits two messages of the above format, one a few seconds after the other.

2.2 Type 82_h – Temperature Transmitter

There are two versions of the temperature transmitter depending on the firmware version. Version 1 has a 0.5°C resolution. Version 2 onwards adds the capability of 0.1°C resolution readings, but still presents 0.5°C readings in the same way, making it backwards compatible.

2.2.1 Standard Resolution (0.5 °C) Temperature Transmitter

(Firmware Version 1)

Status:		Set (1) for low battery. Not used. Not used. Not used. Firmware version, 1.		
Data 1 – 2:	Bit 12 – 14:	Error. Not used. 12-bit raw ADC value in twos complement format (high byte first).		
Data 3:	Not used, 0.			
Data 4:	•	Signal strength (between 0-10). Cumulative counter that increments for each transmission (between 0-15).		
The temper	ature in °C is	calculated as follows.		
Bit 11 indic	ates the sign.			
If bit 11 is c	lear (0) then th	ne temperature is given by		
Tem	Temperature = raw ADC value / 2.			
If bit 11 is s	et (1) then the	temperature is given by		
Tem	Temperature = -(4096 - raw ADC value) / 2			
Examples				
8034	h – MSB set	Invalid Temperature		
0032	² h = 50	Temperature = 50 / 2 = + <u>25.0 °C</u>		
OFF	Eh = 4094	Temperature = (4096 - 4094) / 2 = - <u>1.0 °C</u>		
OFE	$D_{\rm h} = 4064$	Temperature = (4096 - 4064) / 2 = - <u>16.0 °C</u>		

2.2.2 High Resolution (0.1 °C) Temperature Transmitter

(Firmware Version 2 Onwards)

Status:	Bit 7: Bit 6: Bit 5: Bit 4: Bit 0 – 3:	Not used. Not used.			
Data 1 – 2:	Bit 15: Bit 12 – 14: Bit 0 – 11:				
Data 3:	ADC count r	remaining, COUNT_REMAIN.			
Data 4:		Signal strength (between 0-10). Cumulative counter that increments for each transmission (between 0-15).			
•		to a resolution of 0.5°C can be calculated from ulation for the standard resolution transmitter above.			
The extra re	esolution come	es from the COUNT_REMAIN value in Data 3.			
From the te	mperature ser	nsor's data sheet			
Tem	Temperature = TEMP_READ - 0.25 + <u>16 - COUNT_REMAIN</u> 16				
Where:					
TEM	P_READ =	Temperature value calculated from Data $1 - 2$, but with bit 0 truncated.			
COU	COUNT_REMAIN = Value in Data 3.				
Example	Example				
Data $1 - 2 = 0FB7_h$ Data $3 = 02_h$					
Trun	Truncate bit 0 in Data $1 - 2 = 0FB6h$				
Corre	Corresponding temperature, TEMP_READ = -74 / 2 = -37				
COU	COUNT_REMAIN = Data 3 = 2.				
Tem	perature = -37	$r - 0.25 + \frac{16 - 2}{16} = \frac{-36.375 \ ^{\circ}\text{C}}{16}$			

2.3 Type 88 h – Alarm/Status Transmitter

- Status:
- Bit 7: Set (1) for low battery. Bit 6: Not used.
- Bit 5: Alarm/status channel 2 (0 = off, 1 = on).
- Bit 4: Alarm/status channel 1 (0 = off, 1 = off).
- Bit 0 3: Firmware version.
- Data 1 3: 24-bit pulse count value (high byte first). E.g. Value $234455_h = 2311253$
- Data 4: High nibble: Signal strength (between 0-10). Low nibble: Cumulative counter that increments for each transmission (between 0-15).

2.4 Type F1 h – Various Transmitters

The F1 h type is used for new transmitters that do not fit within the existing types. Most of them use extra supplementary messages for additional information.

2.4.1 Analogue Voltage (0 – 10V) Transmitter

Status:	Bit 7:	Set (1) for low battery.
	Bit 6:	ADC Type bit = 1.
	Bit 5:	Not used.
	Bit 4:	Not used.
	Bit 0 – 3:	Firmware version.

Data 1 – 2: 10-bit raw ADC value channel 1 (high byte first).

Data 3 – 4: 10-bit raw ADC value channel 2 (high byte first).

The voltage is given by

Voltage = raw ADC value x 0.0122

2.4.2 High Resolution Temperature (PT100) Transmitter

The temperature transmitter sends two data packets, a main data packet and a supplementary packet with additional type information.

Main Packet

Status:	Bit 7: Bit 6: Bit 5: Bit 4: Bit 0 – 3:		
Data 1 – 2:	16-bit calibr (high byte fi	ated temperature value in twos complement format rst).	
Data 3 – 4:	16-bit raw A	DC value (high byte first).	
Supplemen	tary Packet		
Status:	Bit 7: Bit 6: Bit 0 – 5:		
Data 1 – 2:	Transmitter subtype, 1 (high byte first).		
Data 3:Firmware version major.Data 4:Firmware version minor.			
The tempera	ature in °C is	calculated as follows.	
Bit 15 indica	tes the sign.		
If bit 15 is clear (0) then the temperature is given by			
Temperature = calibrated temperature value / 10			
If bit 1 is set (1) then the temperature is given by			
Temperature = - (65536 - calibrated temperature value) / 10			

2.4.3 Sensus Transmitter

The Sensus transmitter reads the data and serial number from a water meter using the Sensus or Neptune protocol, or leak information from a Permalog+. It sends three data packets, a main data packet and two supplementary packets with additional type and identification information. The format of the main data packet depends on whether it is connected to a water meter or Permalog+.

Water Meter Main Packet

Status:	Bit 7:	Set (1) for low battery.
	Bit 6:	Clear (0), data packet.
	Bit 5:	Not used.
	Bit 4:	Set (1) for meter read error.
	Bit 0 – 3:	Firmware version.

Data 1 – 4: 32-bit meter reading (most significant byte first).

Permalog+ Main Packet

Status:	Bit 7: Bit 6: Bit 5: Bit 4: Bit 0 – 3:	Set (1) for low battery. Clear (0), data packet. Set (1) for leak detected. Not used. Firmware version.
Data 1:	Leak noise level.	

- Data 2: Leak noise spread.
- Data 3: Not used.
- Data 4: Cumulative counter that increments for each transmission (between 00_h -FF_h).

Supplementary Packet 0

Status:	Bit 7: Bit 6: Bit 0 – 5:	Not used. Set (1), supplementary packet. Supplementary packet number, 0.
Data 1 – 2:	Transmitter subtype (2 = Water meter, 3 = Permalog+) (high byte first).	
Data 3: Data 4:	Firmware version major. Firmware version minor.	

Supplementary Packet 1

Status:

Bit 7:Not used.Bit 6:Set (1), supplementary packet.Bit 0 - 5:Supplementary packet number, 1.

Data 1 – 4: 32-bit water meter or Permalog+ serial number (most significant byte first).

2.5 Type F2_h – Pressure/Flow Transmitter

The type $F2_h$ pressure/flow transmitter has two consecutive serial numbers, one for the pressure channel and one for the flow channel. It transmits two messages, the first for the pressure channel and approximately 4 seconds later the second for the flow channel.

Pressure Channel (First Message)

Status:	Bit 7:	Set (1) for low battery.
	Bit 6:	Not used.
	Bit 5:	Not used.
	Bit 4:	Not used.
	Bit 0 – 3:	Firmware version.

Data 1 - 2: 16-bit pressure in decimetres (dm) of water (high byte first).

Data 3 – 4: 16-bit raw ADC value (high byte first).

Flow Channel (Second Message)

Status:	Bit 7:	Set (1) for low battery.
	Bit 6:	Not used.
	Bit 5:	Not used.
	Bit 4:	Not used.
	Bit 0 – 3:	Firmware version.

- Data 1 3: 24-bit pulse count value (most significant byte first). E.g. Value $234455_h = 2311253$
- Data 4: Cumulative counter that increments for each transmission (between 0-15).

HWM-Water Ltd Ty Coch House Llantarnam Park Way Cwmbran NP44 3AW United Kingdom +44 (0)1633 489479 www.HWM-water.com

DOC-130-0040-A Radio-Tech VHF Transmitter Messages.doc